Why Java Isn’t Smalltalk

Sigrid E. Mortensen


Why Java Isn’t Smalltalk: An Aesthetic Observation

by Sigrid E. Mortensen

A Bad Movie

I watched a bad movie the other night.  It doesn’t matter which one; we’ve all seen bad movies, and we recognize one when we see it: one in which the acting is too broad, the lines are repetitive, sequences that are supposed to be humorous or moving drag on too long until you either fidget or reach for the fast-forward button on the remote control, and the sight gags are obvious and overdone.  These are movies that are, in short, aesthetically unpleasing.

Furthermore, the running critique in the viewer’s head as s/he catalogs yet another of a bad movie’s flaws serves to distract from the movie’s original purpose: its plot.  When the movie ends, the viewer may not even remember the plot, but will certainly remember all of its aesthetically unpleasing elements!

I almost hate to say it, but to the experienced Smalltalker, Java is like a bad movie in that it, too, is aesthetically unpleasing.  Most of us have been striving all of our Smalltalk careers for some ephemeral quality we call “elegance” in coding and design.  It is a quality that could also be called “aesthetics.”  We do not seek this quality because we are all really artists in programmer’s clothing (though some of us are!), but because our experience has shown us that programs that are more elegant are easier to create, to understand, and to maintain than those that are not.

Elegance – What Is It?

Though we talk about elegance a great deal in the Smalltalk community and we are quick to recognize elegant designs when we see them, we very rarely stop to define exactly what we mean by the word “elegant”.  This is probably because it is a difficult word to define – even my Random House College Dictionary (revised edition) wasn’t much help.  It’s definition of “elegance” was rather vague, but it did lead me through a chain of synonyms which I believe capture the essence of what we as programmers mean when we talk of elegance:

Elegance: “something elegant; a refinement”

Refine: “to bring to a fine or a pure state; to purify”

Pure: “free from anything of a different, inferior, or contaminating kind…unmixed”

Simplicity and Smalltalk

At its core, then, elegance is captured by purity, consistency, sameness and simplicity.  These are qualities that are inherent in the design of the Smalltalk language – in its syntax, in its short lists of reserved words and operators, and in its basic tenet that “everything is an object.”

At KSC, when we teach beginning Smalltalkers we tell them that the Smalltalk syntax is one of the simplest of all programming languages, consisting of the form:


[image: image1.wmf]
Figure 1: Smalltalk Syntax

All actions in Smalltalk are realized by sending messages to objects, and every message returns an object.  Since everything in Smalltalk is an object, everything understands some set of messages.  Furthermore, since even classes in Smalltalk are objects, even the creation of new instances is achieved by sending messages to objects.

We further teach our students that Smalltalk has only five reserved words (true, false, nil, self and super) and two operators (assignment and return) – short lists to remember.  Other than these reserved words, any word can be declared as a variable; and other than these two operators (and a handful of compiler delimiters), any symbol will be a message.  In fact, everything a Smalltalk programmer will encounter will be either an object or a message, following the same rules of syntax as all other objects and messages.  

This is simplicity, purity, refinement.  It is elegance.  It is aesthetically pleasing.

Complexity and Java

A quick look at Java shows that it is not nearly as simple.  Its syntax is sometimes – but not always – object-followed-by-message; its lists of reserved words and operators are long; methods don’t necessarily return objects; all object-like things are not necessarily objects; and all class-like things are not necessarily classes.  Furthermore, data and behavior hiding are subjective, exception handling is rigidly enforced, classes can be declared to either always be superclasses or never become superclasses, and some objects may change the types of other objects in a way that forces the programmer to change the types back.

Was That a Reserved Word I Saw You With Last Night?

The list of reserved words in Java takes up half of a page in Java in a Nutshell [Flanagan, 1997].  There are fifty-nine of them – plus nine more reserved method names.  These are long lists of words to remember to avoid using as variable names and message names – much longer than Smalltalk’s single list of five reserved words.

When is a Java Object Not an Object?

Unlike in Smalltalk, not everything in Java is an object.  There are “real” objects – those that inherit from the root Object class – and primitive data types: integers, characters, floating point numbers, Booleans, etc.  The latter, since they are not objects, cannot be sent messages, cannot serve as superclasses for other classes, and cannot have their behavior redefined.

In addition, among Java’s messages, not all return objects.  As a side effect of Java’s strong typing, the return type of a message must be declared, and it can be declared to be an object type, a specific primitive data type, or nothing (void).

…Or a Message Not a Message?

While most of Java’s syntax consists of the form:

object.message();

there are notable exceptions to this rule.  Instances, for example, are not created by sending messages to objects; rather a reserved word, new, is used in conjunction with the name of the class which – for the purposes of creating instances only – takes the form of a message name.  And the new keyword comes before the class/method name, rather than after it like other messages.  Java’s “constructors,” as they are called, look like this:

new Classname();

Due, in part, to the existence of its non-object primitive data types, not all actions in Java are achieved through message sends.  Rather, there is a list of some forty-four operators that may be performed – some appropriate for one or more subsets of the primitive data types, some for objects, and some for both.  Since these are not messages, they do not fit within the object.message() format; rather, they precede, follow, or fit between one or two operands.  Furthermore, they cannot be “overloaded” (applied to objects/types other than those defined for the language) – a process we call “polymorphism” for their Smalltalk cousins.

Of Java’s operators, one of the most confusing is instanceof.  Most of Java’s operators are composed of one or more special characters, which could serve to make them relatively easy to distinguish from messages, but instanceof, as a collection of alphabetic characters, can appear to the uninitiated as a message.  It is not; it must fit between two operands like the other binary operators. 

…Or a Class Not a Class?

Objects that are not objects and messages that are not messages are only the tip of Java’s complexity iceberg.  It gets worse.  Not all class-like things in Java are really classes.  Some of the constructs that group related messages for a common purpose are actually “interfaces” which have different syntax and semantics from classes.  A new class “extends” (subclasses) a class, but “implements” an interface.  While I will admit that the interface notion is a powerful one – and is certainly less complex than its C++ counterpart (multiple inheritance) – it adds yet another complexity to the language.

Visibility Modifiers

In Smalltalk, data and behavior visibility are simply and consistently enforced: all data is private, and all behavior is public.  Some might claim that the latter, particularly, is an arbitrary language-design choice, and point out that Smalltalkers have struggled to overcome the shortcoming of all behavior being public by either introducing conventions in method comments or by creating programmer tools that separate public methods from private ones.  They will further argue that, even then, the language fails us by still allowing any object to send the so-called “private” messages to our objects.  All of this is true.  A quick look at Java’s visibility modifiers, however, will show that Smalltalk’s consistency in defining what is always public and what is always private makes it a simpler language.

In Java, there are five visibility modifiers, all of which can apply to either data or methods (collectively called “members” in the Java vernacular).  The five modifiers are: public, “default” (also referred to as “package” but unnamed in the syntax), protected, private-protected, and private.  These modifiers determine which objects can directly access the data or call the message – as well as which objects inherit the data or the method – according to whether the accessing or inheriting object resides in the same package as the object from which it is attempting to access or inherit a member.  

How the five visibility modifiers cut across the packages according to accessibility and inheritance would require a three- or four-dimensional space to diagram (in order to map the modifier against the membership in a package against whether access is allowed against whether inheritance is allowed), but I’ll attempt to describe it in words.  First the two easy ones: predictably, public members are accessible to every other object and inherited by every subclass of the object, and private members are available only to the defining object.  Private members cannot be inherited, either by subclasses within the defining object’s package or those outside of the package. Protected members can be accessed only by objects in the same package, but can be inherited by objects in other packages.  Private-protected members are accessible by no object other than the defining object, but can be inherited by subclasses in any package.  Finally, the default visibility (package), allows members to be inherited and accessed by objects within the defining object’s package, but neither inherited nor accessed by objects outside the package.

Try-Catch

The Java compiler insists that any method that calls another method that throws an exception must either 1) handle the exception or 2) declare that it, too, throws the exception (or, alternatively, the calling method could handle part of the exception and throw the rest).  While most Smalltalk dialects also provide exception handling, the need to do so is not in any way enforced by the Smalltalk compiler.  Exception handling is, by its very nature, a complex addition to a program that requires the programmer to think about the implications of the actions of his object on a scope far outside that object.  This has the potential to break – or at least severely bend – encapsulation, since one object must know how another object is implemented enough to know what exceptions it may throw and how it might handle those exceptions.  The Smalltalk programmer has the luxury of thinking about exception handling relatively late in the development process, while Java forces the programmer to consider this complexity early – potentially, as often as with every method send.

Class and Method Modifiers

Not all classes in Java can become superclasses.  Java allows a programmer to define a class or a method as “final.”  Final classes can never become superclasses, and final methods cannot be overridden.  Later, if another programmer thinks of a legitimate extension to a final class, s/he is out of luck.  Rather than create a new subclass that inherits all the functionality of the superclass and adds the new functionality, short of adding a method to an existing class (something not recommended by Sun for their Java base classes) the programmer must re-implement the entire class.  Although most programmers would rarely create new classes assuming they would never become superclasses, final classes do appear in the language.  Many of Java 1.1’s “wrapper” classes, for example – classes designed to allow primitive data types to be “wrapped” in and treated as real objects – are declared as final.

Other Java classes must be superclasses.  These are the classes declared as “abstract”.  Abstract classes cannot be instantiated.  (This makes abstract classes like interfaces, which are by their very nature abstract – whoops! except in Java 1.1, where some interfaces can be instantiated, adding layer of inconsistency upon layer of inconsistency….) Furthermore, any class that inherits from an abstract class must either 1) override all of the superclass’ abstract methods and provide concrete implementations for those methods or 2) if it has even a single abstract method, also be declared abstract.

Methods in Java may also be “static.”  Static methods are like Smalltalk’s class methods in that they cannot access the class’ instance variables, but can refer to the class’ static variables (which are like class variables).  The catch is that static methods are also implicitly final, so they cannot be overridden.

These class and method modifiers, while making it explicit what can and cannot be overridden and/or subclassed, add another complexity to the Java language.

Casting

Another obvious difference between Java and Smalltalk is the issue of static vs. dynamic typing.  Both have their strengths, and I won’t argue here that Smalltalk’s dynamic typing is somehow objectively “better” than Java’s static typing.  There does exist, however, at least one impact of Java’s static typing on the language’s complexity: the need to cast objects into different types.  

Some general-purpose Java classes, like its Vector class (Java’s version of OrderedCollection), take as arguments objects of any Object type (i.e., any subclass of Object, which excludes primitive data types).  In order to accomplish this within the context of Java’s strong typing, the object being added to the vector must be cast to the highest point in the inheritance hierarchy: the Object class.  As a result of the upward cast, when the object is later retrieved from the Vector, although it is still an instanceof the original class, it can only respond to messages defined for the Object class.  If the programmer needs to send the retrieved object a message defined for that object’s class, s/he must cast the object back down to its original type. Not all casting is obvious.  Upward casting (like to the Object class) is implicit; downward casting must be explicit.

Primitive and real object types, messages and operators, classes and interfaces, visibility modifiers, exception handling, class and method modifiers: it takes most of an introductory training course to teach these terms and concepts, let alone where and how to use them effectively.  So much time must be spent on the mechanics of the language – even in order to understand the existing library – that very little time is left over for teaching higher level concepts like object design and modeling a business domain.

Impact of Complexity

Perhaps by now I’ve convinced you that Java is a more complex language than Smalltalk.  So what?  Big deal, right?  You may legitimately argue that all of the complexity I’ve discussed so far is necessary for a language with static typing, and that static typing, in turn, allows the compiler to find errors that, in a dynamically bound language, wont be discovered until runtime.  Aside from being aesthetically unpleasing to the Smalltalk programmer, is there any real, measurable negative impact of a language’s complexity on a business’ bottom line?  In a word: yes.  There are two important consequences of this complexity: 1) on training costs and 2) on programmer productivity.  It is even possible that the difference in productivity between the two languages will be so great that the Smalltalk programmer will have more than enough time to find all of the runtime errors – and have enough left over to enhance the functionality of the program as well – while the Java programmer is still wrestling with syntax and the compiler.

A Juggling Act

G. A. Miller [1956], in his paper The Magical Number Seven, Plus or Minus Two, concluded that a person’s short-term memory is limited to holding approximately seven unrelated ideas at a time.  Beyond an approximate maximum of nine ideas, one or more items drop out of short-term memory to make room for the new idea.

At one time or another I think we have all, as programmers, experienced the sensation of feeling like a juggler, keeping approximately seven “balls” (unrelated ideas or concepts) in the air (our short-term memory) as we attempt to pull them together into a coherent whole.  If a colleague walks up to your desk when you are in the middle of your juggling act – even if he says nothing, even if the interruption is brief – the distraction is enough to cause you to let most (if not all) of the balls fall to the floor.

The distraction, however, does not have to be external; it can be the result of having to figure out some sub-section of your code in order to solve a larger problem.  A C-programmer friend of mine says, for example, that he has to do this every time he calls the scanf() function.  He has to go look up which special characters are used for which purposes, and what the format of the string should be.

This is a mental process that could be called “subroutining” – something computers are very good at.  Programming languages are designed to put one context on the stack in order to switch to another context while a sub-section (a subroutine) of the code executes.

The problem for humans is that our short-term memories do not contain stacks.  As Miller shows, we have an approximately seven-item “scratch pad”.  When we switch contexts, all of those approximately seven things that we were trying to relate to one another must be dropped on the floor in order to make room for another seven things from a different context.  If the context switch is of a short enough duration, it may be possible for us to catch the original balls on the first bounce and reconstruct their relationships to each other in our short-term memories.  Longer duration context switches, however – one subroutine that leads to another and another and another – decrease the possibility that the original seven ideas will be reconstructed in the same manner as they were originally.  Putting the seven balls back into the air in the same configuration as they were before the first interruption is an unlikely and error-prone prospect.

The more complex a programming language is, the more frequent these context switches will be.  For example, when faced with a business problem to solve, the Smalltalker will ask the following hierarchy of questions:


[image: image2.wmf]What is the

Object?

What is the

Message?

Is it an object I

already have?

Use that

object

Do I already

have the class

of the object?

Send 

new

 to the

class to create the

object.

Where should the

class exist in the

hierarchy?

Create the new

class as a

subclass of the

appropriate

superclass

Send 

new

 to the

class to create the

object.

N

Is it a message

the object already

has?

Send that

message

Create the

message

Send the

message

Y

N

Y

Y

N


Figure 2: “What are the Object and Message?” Smalltalk Decision Tree

By contrast, the Java subroutining may look like this…


[image: image3.wmf]What is the

Object?

real

primitive

N

What is the

Object’s type?

Is it a real object

or a primitive data

type?

Is it an object I

already have?

Use that

object

Remember  the

constructor

syntax

Should the class inherit

from a superclass or

implement an interface?

Where should the

class exist in the

hierarchy?

Create the new

class as a

subclass of the

appropriate

superclass

Is the

superclass

abstract?

Implement all of

the abstract

methods, then…

Y

inherit

Remember  the

constructor

syntax

interface

Which interface(s)

should I

implement?

Implement every

method in the

interface and…

Which operators

work with this

primitive type?

Do I already have

the class of the

object?

Use the 

new

 reserved

word with the class

name as a message

Use the 

new

 reserved

word with the class

name as a message

Declare a

variable of that

type

Is the variable

name

reserved?

Y

Think of

another

name

Y

Y

N


Figure 3: “What is the Object?” Java Decision Tree

…and this…


[image: image4.wmf]What is the

message?

message

operator

N

Should it be a

message or an

operator?

Is it a message

the object already

has?

Is it a message I

can access?

Create a new

subclass (see

above)

Is the object an instance

of my own class or

someone else’s?

Is the message name I

want to use either

reserved or an operator?

Think of a new

message name

Add the message

and call it.

Y

Use the

operator

Y

Does it work for

this data type?

Is there a Math

function  I can

use instead?

Now what???

?

Will this message

or operator change

the type of my

object?

Is the class of the

object extendable

or final?

Does the

operator exist?

Can I extend the

Wrapper class or is it

final?

Y

Y

Send that

message

extensible

final

mine

someone else’s

N

Y

N

Y

N

Y

Use that Math

function

Y

Can I wrap the

primitive data

object into a

“Wrapper” class?

N

Does the Wrapper

class have the

message that I

need?

Y

Wrap the object

and send the

message

Y

Now what???

?

N

N

Will I need to

change it back?

What was

that type?

When

should I

cast it?

What was

that  casting

syntax?

…

N

…


Figure 4: “What is the Message?” Java Decision Tree

Obviously, Java’s greater complexity requires more subroutining, and this extra subroutining will take more time and be subject to more errors than a simple subroutine.  And this is just the complexity of sending a single message to a single object.  It says nothing of reading pre-existing code – a necessary evil if any maintenance is required – where you must decide if what you’re reading is an object, a primitive, a message, an operator, or one of those 59 reserved words!

“Chunking” – Automatic Subroutining

In spite of the differences in relative complexity in Smalltalk and Java, I am not claiming that Java is so complex that it will be impossible for anyone to ever become proficient in the language!  We all know from experience that, given sufficient time any thinking process – even a complex one – will become automatic.  How is this possible?  

As Miller pointed out in his Magic Number 7, our short-term memories are limited to approximately seven items only if those seven items are unrelated.  Learning is the result of what Miller calls “chunking”: relating previously unrelated ideas in short term memory into one coherent “chunk” which can then be remembered as a unit.  If we go through the same subroutine enough times, our brains will create a pattern out of the subroutine, so that we can eventually perform automatic subroutining.  (These patterns are not unlike the popular “design patterns” of programming: recognizable groupings and interactions of classes that form a higher level of abstraction than a single class on its own.)

The problem with complexity is that the more subroutining a person must do, the slower will be the chunking process, which means learning the language will take a lot longer.  There are more branches to visit in the decision tree, so each branch will be visited less often and each will be less likely to become part of a recognizable pattern, or chunk.  By contrast, given a simple or consistent paradigm, it will be easier and faster to chunk something, because more things will chunk to the same pattern.  A pattern that is used more often is more likely to be chunked.  (For an example of chunking among chess experts, see [Chase and Simon, 1973].)

Furthermore, in a simpler language, it will be necessary to learn fewer total chunks to accomplish the same task.  Therefore, if two otherwise equal learners – one in Smalltalk and one in Java – have an equal amount of time to learn their respective languages, each will create an equal number of chunks, but the complexity of Java will mean that the Java learner’s collection of chunks will apply to less abstract problems (only a small subset of what could be accomplished), while the Smalltalker’s collection of chunks will be more complete, more abstract, more powerful, and able to be applied to broader issues.  A Smalltalker, for example, will be able to spend more time thinking about the modeling of the business domain while the Java programmer is still thinking about language constructs.

Given these differences in the chunking abstractions for the Smalltalk learner and the Java learner, we would expect a graph of a Smalltalker’s performance (i.e., the speed with which s/he can produce a given unit of code, or the inverse of the number of mistakes s/he is likely to make) relative to that of a Java programmer for a given amount of expertise (i.e., time to learn the language, number of chunks formed) to look like Graph 1.  A given Smalltalk programmer with the same level of expertise as his Java counterpart will have a competitive productivity advantage.


[image: image5.wmf]

Expertise

Performance

Smalltalk 

Java


Graph 1: Performance for Java and Smalltalk Programmers Over Time

What About Those Experts?

If a programmer can eventually learn either Smalltalk or Java and become proficient in either language, perhaps a language’s relative complexity is only an issue during the learning stages.  If so, perhaps the language’s complexity only impacts training time and training costs.  Once a programmer becomes an expert, doesn’t the graph level out to the same ideal of “infinite expertise?”  After expertise is achieved, aren’t all languages the same?

Well…yes and no.

In his famous study on cigar-rolling operators, E. R. F. W. Crossman [1959] showed that there really is no such thing as a quintessential “expert.”  As long as a person keeps performing the same task – even a task as seemingly trivial as rolling a cigar – that person will keep improving his or her performance.   S/he will continue to learn, continue to “chunk”, make fewer mistakes, and become more efficient at the task.  There is no such thing as infinite expertise; the learning graph never completely levels off.

It is a possibility that the performance of both sets of programmers will tend toward the same asymptotic level, where the differences in performance between the two languages will be so small as to be insignificant.  However, in practice, the average programmer – whether Smalltalk or Java – never reaches that level (see Graph 2).  Nearing that asymptotic level is so unlikely that the typical pool of programmers from which any company can expect to draw its talent will still be in the process of gaining expertise; they will not have achieved it.  Furthermore, improvements to the language, upgrade releases, third-party add-ons, additions to the libraries: these all conspire to keep the typical programmer forever in the learning stages of a language, its library, and its environment.  Since we are likely to always be learners, it is important to our continued productivity that we choose a language that intrinsically supports optimization of the learning process.


[image: image6.wmf]

Expertise

Performance

Smalltalk 

Java

typical range of expertise 


 Graph 2: Typical Range of Expertise
Conclusion

Just as a running critique of a bad movie distracts from its purpose (its plot), day-to-day struggling with the mechanics of a complex programming language can distract from its purpose: modeling the business domain.  Just as we can walk out of a bad movie thinking about what made it bad, instead of about its plot, we can walk out of a day of programming with a complex language trying to remember how to do simple operations, instead of about the object model we intended to build or the user problem we intended to solve.

This is true of any two languages compared side-by-side.  I know of companies where they prefer to use C over C++ because C++ is too complex for their needs.  Java is certainly not the most complex programming language on the market, and it has a number of inherent advantages (built-in security, namespaces, web-enabling technology, etc.) over other languages – including Smalltalk – for certain purposes.  Java is, however, a far more complex programming language than Smalltalk, and this complexity is not without consequences.

Greater complexity will impact how quickly a language is learned and, as a result, the productivity and levels of abstract thought a programmer is likely to achieve while learning the language.  In addition, since most programmers will continue to be learners of a language for the majority of their programming careers, the complexity of the language will continue indefinitely to impact productivity.

I enjoy challenges, so I will continue to learn as much as I can about Java.  I find the language to be a great improvement over many of the other popular non-Smalltalk object-oriented languages on the market, and I am curious to learn more about its capabilities and limitations.  Even so, I will always enjoy using Smalltalk: for its simplicity, for its beauty, for its elegance and – above all – for its productivity.  

Perhaps it’s not just about aesthetics after all.

References:

Chase, W.G., and Simon, H.A.  (1973).  The mind’s eye in chess.  In W.G. Chase [Ed.], Visual Information Processing.  NY: Academic Press.

Crossman, E.R.F.W.  (1959).  A theory of the acquisition of speed-skill.  Ergonomics, 2, 153-166.

Flanagan, David. (1997).  Java in a Nutshell, Second Edition. CA: O’Reilly & Associates, Inc.

Miller, G.A.  (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information.  Psychological Review, 63, 81-97.

I would also like to thank Richard P.W. Loosemore for contributing to the cognitive psychological ideas presented in this article.

About the Author:

Sigrid Mortensen is a Senior Member of the technical staff at Knowledge Systems Corporation in Cary, NC, where she teaches both introductory and advanced Smalltalk classes, and mentors teams of new Smalltalk programmers through KSC’s Practicums and Smalltalk Apprentice Programs (STAPs).  Prior to joining KSC, Ms. Mortensen spent six years as a Smalltalk programmer and manager of Smalltalk-based projects for the Rochester Institute of Technology Research Corporation.  She holds a Master’s Degree in Computer Science from Rochester Institute of Technology, and a Bachelor’s Degree in Fine Art from Jacksonville University.

Ms. Mortensen can be reached by email at smortensen@ksccary.com.

Updated Bio (2017):

Sigrid Mortensen is now the COO, VP of Engineering, and Scrum Master at Susaro, Ltd, an Artificial Intelligence startup.  She still programs in Smalltalk, and has also recently branched into Swift.  She can be reached by email at sigrid@susaro.com.
10/02/17

11

_933045957.doc


What is the Object?







What is the Message?







Is it an object I already have?







Use that object







Do I already have the class of the object?







Send new to the class to create the object.







Where should the class exist in the hierarchy?







Create the new class as a subclass of the appropriate superclass







Send new to the class to create the object.







Y







N







N







Y







Is it a message the object already has?







Send that message







Create the message







Send the message











N







Y












_933046121.doc


What is the Object?







Implement every method in the interface and…







Use that object







Is it an object I already have?







Is it a real object or a primitive data type?







What is the Object’s type?







Remember  the constructor syntax







Use the new reserved word with the class name as a message







Should the class inherit from a superclass or implement an interface?







real







Y







primitive







N







Use the new reserved word with the class name as a message







Remember  the constructor syntax







inherit







Y







Which interface(s) should I implement?







interface







Declare a variable of that type







Where should the class exist in the hierarchy?







Create the new class as a subclass of the appropriate superclass







Is the superclass abstract?







Implement all of the abstract methods, then…







Which operators work with this primitive type?











Do I already have the class of the object?







Is the variable name reserved?







Y







Think of another name







Y







N












_933046325.doc


What is the message?







Is there a Math function  I can use instead?







Is it a message I can access?







Is it a message the object already has?







Should it be a message or an operator?







Y







Create a new subclass (see above)







Does the operator exist?







Is the object an instance of my own class or someone else’s?







message







Y







operator







N







Can I extend the Wrapper class or is it final?







Use the operator







Y







What was that type?







Does it work for this data type?







Y







Send that message







Is the message name I want to use either reserved or an operator?







Think of a new message name







Will I need to change it back?







Add the message and call it.







Now what????







Will this message or operator change the type of my object?







Is the class of the object extendable or final?







extensible







final







someone else’s







mine







Y







N







Y







N







Y







N







Y







Use that Math function







N







Can I wrap the primitive data object into a “Wrapper” class?







Y







Does the Wrapper class have the message that I need?







Y







Wrap the object and send the message







Now what????







N







N







When should I cast it?







What was that  casting syntax?







…







N







…












_933004623.xls
Chart2

		100		34

		125		67.2

		143.75		93.76

		157.8125		115.008

		168.359375		132.0064

		176.26953125		145.60512

		182.2021484375		156.484096

		186.6516113281		165.1872768

		189.9887084961		172.14982144

		192.4915313721		177.719857152

		194.3686485291		182.1758857216

		195.7764863968		185.7407085773

		196.8323647976		188.5925668618

		197.6242735982		190.8740534895

		198.2182051986		192.6992427916



Smalltalk

Java

Expertise

Performance



Sheet1

				Smalltalk		Java

				100		34		100		166

				125		67.2		75		132.8

				143.75		93.76		56.25		106.24

				157.8125		115.008		42.1875		84.992

				168.359375		132.0064		31.640625		67.9936

				176.26953125		145.60512		23.73046875		54.39488

				182.2021484375		156.484096		17.7978515625		43.515904

				186.6516113281		165.1872768		13.3483886719		34.8127232

				189.9887084961		172.14982144		10.0112915039		27.85017856

				192.4915313721		177.719857152		7.5084686279		22.280142848

				194.3686485291		182.1758857216		5.6313514709		17.8241142784

				195.7764863968		185.7407085773		4.2235136032		14.2592914227

				196.8323647976		188.5925668618		3.1676352024		11.4074331382

				197.6242735982		190.8740534895		2.3757264018		9.1259465105

				198.2182051986		192.6992427916		1.7817948014		7.3007572084





Sheet1

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0



Java

Smalltalk

Expertise

Performance



Sheet2

		





Sheet3

		






_933006186.xls
Chart3

		100		34

		125		67.2

		143.75		93.76

		157.8125		115.008

		168.359375		132.0064

		176.26953125		145.60512

		182.2021484375		156.484096

		186.6516113281		165.1872768

		189.9887084961		172.14982144

		192.4915313721		177.719857152

		194.3686485291		182.1758857216

		195.7764863968		185.7407085773

		196.8323647976		188.5925668618

		197.6242735982		190.8740534895

		198.2182051986		192.6992427916



typical range of expertise

Smalltalk

Java

Expertise

Performance



Sheet1

				Smalltalk		Java

				100		34		100		166

				125		67.2		75		132.8

				143.75		93.76		56.25		106.24

				157.8125		115.008		42.1875		84.992

				168.359375		132.0064		31.640625		67.9936

				176.26953125		145.60512		23.73046875		54.39488

				182.2021484375		156.484096		17.7978515625		43.515904

				186.6516113281		165.1872768		13.3483886719		34.8127232

				189.9887084961		172.14982144		10.0112915039		27.85017856

				192.4915313721		177.719857152		7.5084686279		22.280142848

				194.3686485291		182.1758857216		5.6313514709		17.8241142784

				195.7764863968		185.7407085773		4.2235136032		14.2592914227

				196.8323647976		188.5925668618		3.1676352024		11.4074331382

				197.6242735982		190.8740534895		2.3757264018		9.1259465105

				198.2182051986		192.6992427916		1.7817948014		7.3007572084





Sheet1

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0



Java

Smalltalk

Expertise

Performance



Sheet2

		





Sheet3

		






_932999057.doc











